

## Japanese (jpn), day 1

2017年7月18日火曜日

問題 1.  $a_0 > 1$  をみたすような各整数  $a_0$  に対して, 数列  $a_0, a_1, a_2, \ldots$  を以下のように定める:

$$a_{n+1} = \begin{cases} \sqrt{a_n} & \sqrt{a_n} \text{ が整数のとき,} \\ a_n + 3 & \text{そうでないとき,} \end{cases} \quad n = 0, 1, 2, \dots.$$

このとき, ある A が存在して  $a_n = A$  をみたす n が無数にあるような  $a_0$  をすべて求めよ.

問題 2.  $\mathbb{R}$  を実数全体からなる集合とする. 関数  $f: \mathbb{R} \to \mathbb{R}$  であって, 任意の実数 x, y に対して

$$f(f(x)f(y)) + f(x+y) = f(xy)$$

が成り立つものをすべて求めよ.

問題 3. ハンターと見えないうさぎが平面上でゲームを行う. うさぎが最初にいる点  $A_0$  とハンターが最初にいる点  $B_0$  は一致している. n-1 回のラウンドが終わった後, うさぎは点  $A_{n-1}$  におり, ハンターは  $B_{n-1}$  にいる. n 回目のラウンドにおいて, 次の 3 つが順に行われる:

- (i) うさぎは $A_{n-1}$  からの距離がちょうど1であるような点 $A_n$  に見えないまま移動する.
- (ii) 追跡装置がある点  $P_n$  をハンターに知らせる. ただし,  $P_n$  と  $A_n$  の距離が 1 以下であるということだけが保証されている.
- (iii) ハンターは $B_{n-1}$  からの距離がちょうど1 であるような点 $B_n$  に周りから見えるように移動する.

うさぎがどのように移動するかにかかわらず、またどの点が追跡装置によって知らされるかにかかわらず、ハンターは  $10^9$  回のラウンドが終わった後に必ずうさぎとの距離を 100 以下にすることができるか.

時間:4時間30分 各問題は7点満点です.

 $Language \colon Japanese$ 



## Japanese (jpn), day 2

2017年7月19日水曜日

問題 4. 円  $\Omega$  上に RS が直径でないような異なる 2 点 R, S がある.  $\Omega$  の R における接線を  $\ell$  とする. 点 T は線分 RT の中点が S となるような点とする.  $\Omega$  の劣弧 RS 上に点 J があり, 三角形 JST の外接円  $\Gamma$  は  $\ell$  と異なる 2 点で交わっている. A を  $\Gamma$  と  $\ell$  の交点のうち R に近い方の点とする. 直線 AJ は K で  $\Omega$  と再び交わっている. このとき, 直線 KT は  $\Gamma$  に接することを示せ.

問題 5. N を 2 以上の整数とする. 身長が相異なる N(N+1) 人のサッカー選手が 1 列に並んでいる. 鈴木監督は N(N-1) 人の選手を列から取り除き, 残った 2N 人の選手からなる新たな列が次の N 個の条件をみたすようにしたい:

- (1) 身長が最も高い2人の選手の間には誰もいない.
- (2) 身長が3番目に高い選手と4番目に高い選手の間には誰もいない.

:

- (N) 身長が最も小さい2人の選手の間には誰もいない.
- このようなことが必ず可能であることを示せ.

問題 6. 順序づけられた整数の組 (x,y) が原始的であるとは, x と y の最大公約数が 1 であることをいう. 原始的な組からなる有限集合 S が与えられたとき, 正の整数 n と整数  $a_0,a_1,\ldots,a_n$  であって, S に含まれる任意の組 (x,y) に対して

$$a_0x^n + a_1x^{n-1}y + a_2x^{n-2}y^2 + \dots + a_{n-1}xy^{n-1} + a_ny^n = 1$$

をみたすようなものが存在することを示せ.

Language: Japanese

時間:4時間30分

各問題は7点満点です.