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Problems

Day 1

Problem 1. Let Z be the set of integers. Determine all functions f : Z Ñ Z such that,
for all integers a and b,

fp2aq ` 2fpbq “ fpfpa ` bqq.

(South Africa)

Problem 2. In triangle ABC, point A1 lies on side BC and point B1 lies on side
AC. Let P and Q be points on segments AA1 and BB1, respectively, such that PQ is parallel
to AB. Let P1 be a point on line PB1, such that B1 lies strictly between P and P1, and
=PP1C “ =BAC. Similarly, let Q1 be a point on line QA1, such that A1 lies strictly between
Q and Q1, and =CQ1Q “ =CBA.

Prove that points P , Q, P1, and Q1 are concyclic.
(Ukraine)

Problem 3. A social network has 2019 users, some pairs of whom are friends. When-
ever user A is friends with user B, user B is also friends with user A. Events of the following
kind may happen repeatedly, one at a time:

Three users A, B, and C such that A is friends with both B and C, but B and C

are not friends, change their friendship statuses such that B and C are now friends,
but A is no longer friends with B, and no longer friends with C. All other friendship
statuses are unchanged.

Initially, 1010 users have 1009 friends each, and 1009 users have 1010 friends each. Prove that
there exists a sequence of such events after which each user is friends with at most one other
user.

(Croatia)
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Day 2

Problem 4. Find all pairs pk, nq of positive integers such that

k! “ p2n ´ 1qp2n ´ 2qp2n ´ 4q ¨ ¨ ¨ p2n ´ 2
n´1q.

(El Salvador)

Problem 5. The Bank of Bath issues coins with an H on one side and a T on the
other. Harry has n of these coins arranged in a line from left to right. He repeatedly performs
the following operation: if there are exactly k ą 0 coins showing H , then he turns over the kth

coin from the left; otherwise, all coins show T and he stops. For example, if n “ 3 the process
starting with the configuration THT would be THT Ñ HHT Ñ HTT Ñ TTT , which stops
after three operations.

(a) Show that, for each initial configuration, Harry stops after a finite number of operations.

(b) For each initial configuration C, let LpCq be the number of operations before Harry stops.
For example, LpTHT q “ 3 and LpTTT q “ 0. Determine the average value of LpCq over all
2n possible initial configurations C.

(USA)

Problem 6. Let I be the incentre of acute triangle ABC with AB ‰ AC. The
incircle ω of ABC is tangent to sides BC, CA, and AB at D, E, and F , respectively. The
line through D perpendicular to EF meets ω again at R. Line AR meets ω again at P . The
circumcircles of triangles PCE and PBF meet again at Q.

Prove that lines DI and PQ meet on the line through A perpendicular to AI.
(India)
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Solutions

Day 1

Problem 1. Let Z be the set of integers. Determine all functions f : Z Ñ Z such that,
for all integers a and b,

fp2aq ` 2fpbq “ fpfpa ` bqq. (1)

(South Africa)

Answer: The solutions are fpnq “ 0 and fpnq “ 2n ` K for any constant K P Z.

Common remarks. Most solutions to this problem first prove that f must be linear, before
determining all linear functions satisfying (1).

Solution 1. Substituting a “ 0, b “ n ` 1 gives fpfpn ` 1qq “ fp0q ` 2fpn` 1q. Substituting
a “ 1, b “ n gives fpfpn ` 1qq “ fp2q ` 2fpnq.

In particular, fp0q ` 2fpn ` 1q “ fp2q ` 2fpnq, and so fpn ` 1q ´ fpnq “ 1

2
pfp2q ´ fp0qq.

Thus fpn ` 1q ´ fpnq must be constant. Since f is defined only on Z, this tells us that f must
be a linear function; write fpnq “ Mn`K for arbitrary constants M and K, and we need only
determine which choices of M and K work.

Now, (1) becomes

2Ma ` K ` 2pMb ` Kq “ MpMpa ` bq ` Kq ` K

which we may rearrange to form

pM ´ 2q
`

Mpa ` bq ` K
˘

“ 0.

Thus, either M “ 2, or Mpa` bq `K “ 0 for all values of a` b. In particular, the only possible
solutions are fpnq “ 0 and fpnq “ 2n`K for any constant K P Z, and these are easily seen to
work.

Solution 2. Let K “ fp0q.
First, put a “ 0 in (1); this gives

fpfpbqq “ 2fpbq ` K (2)

for all b P Z.
Now put b “ 0 in (1); this gives

fp2aq ` 2K “ fpfpaqq “ 2fpaq ` K,

where the second equality follows from (2). Consequently,

fp2aq “ 2fpaq ´ K (3)

for all a P Z.
Substituting (2) and (3) into (1), we obtain

fp2aq ` 2fpbq “ fpfpa ` bqq

2fpaq ´ K ` 2fpbq “ 2fpa ` bq ` K

fpaq ` fpbq “ fpa ` bq ` K.
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Thus, if we set gpnq “ fpnq ´ K we see that g satisfies the Cauchy equation gpa ` bq “
gpaq`gpbq. The solution to the Cauchy equation over Z is well-known; indeed, it may be proven
by an easy induction that gpnq “ Mn for each n P Z, where M “ gp1q is a constant.

Therefore, fpnq “ Mn ` K, and we may proceed as in Solution 1.

Comment 1. Instead of deriving (3) by substituting b “ 0 into (1), we could instead have observed
that the right hand side of (1) is symmetric in a and b, and thus

fp2aq ` 2fpbq “ fp2bq ` 2fpaq.

Thus, fp2aq ´ 2fpaq “ fp2bq ´ 2fpbq for any a, b P Z, and in particular fp2aq ´ 2fpaq is constant.
Setting a “ 0 shows that this constant is equal to ´K, and so we obtain (3).

Comment 2. Some solutions initially prove that fpfpnqq is linear (sometimes via proving that
fpfpnqq ´ 3K satisfies the Cauchy equation). However, one can immediately prove that f is linear by
substituting something of the form fpfpnqq “ M 1n ` K 1 into (2).
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Problem 2. In triangle ABC, point A1 lies on side BC and point B1 lies on side
AC. Let P and Q be points on segments AA1 and BB1, respectively, such that PQ is parallel
to AB. Let P1 be a point on line PB1, such that B1 lies strictly between P and P1, and
=PP1C “ =BAC. Similarly, let Q1 be a point on line QA1, such that A1 lies strictly between
Q and Q1, and =CQ1Q “ =CBA.

Prove that points P , Q, P1, and Q1 are concyclic.
(Ukraine)

Solution 1. Throughout the solution we use oriented angles.
Let rays AA1 and BB1 intersect the circumcircle of △ACB at A2 and B2, respectively. By

=QPA2 “ =BAA2 “ =BB2A2 “ =QB2A2,

points P,Q,A2, B2 are concyclic; denote the circle passing through these points by ω. We shall
prove that P1 and Q1 also lie on ω.

QP

P1

Q1

A2

BA

B2

B1
A1

C

ω

By
=CA2A1 “ =CA2A “ =CBA “ =CQ1Q “ =CQ1A1,

points C,Q1, A2, A1 are also concyclic. From that we get

=QQ1A2 “ =A1Q1A2 “ =A1CA2 “ =BCA2 “ =BAA2 “ =QPA2,

so Q1 lies on ω.
It follows similarly that P1 lies on ω.

Solution 2. First consider the case when lines PP1 and QQ1 intersect each other at some
point R.

Let line PQ meet the sides AC and BC at E and F , respectively. Then

=PP1C “ =BAC “ =PEC,

so points C,E, P, P1 lie on a circle; denote that circle by ωP . It follows analogously that points
C, F,Q,Q1 lie on another circle; denote it by ωQ.

Let AQ and BP intersect at T . Applying Pappus’ theorem to the lines AA1P and BB1Q

provides that points C “ AB1 X BA1, R “ A1Q X B1P and T “ AQ X BP are collinear.
Let line RCT meet PQ and AB at S and U , respectively. From AB ‖ PQ we obtain

SP

SQ
“

UB

UA
“

SF

SE
,

so
SP ¨ SE “ SQ ¨ SF.
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R

Q1

C

BUA

P

S

Q

F

B1

A1

E

T

P1

ωQ

ωP

So, point S has equal powers with respect to ωP and ωQ, hence line RCS is their radical
axis; then R also has equal powers to the circles, so RP ¨RP1 “ RQ ¨RQ1, proving that points
P, P1, Q,Q1 are indeed concyclic.

Now consider the case when PP1 and QQ1 are parallel. Like in the previous case, let AQ

and BP intersect at T . Applying Pappus’ theorem again to the lines AA1P and BB1Q, in this
limit case it shows that line CT is parallel to PP1 and QQ1.

Let line CT meet PQ and AB at S and U , as before. The same calculation as in the
previous case shows that SP ¨SE “ SQ ¨SF , so S lies on the radical axis between ωP and ωQ.

P1

Q1

A1

B1

E F

QP

S

T

UA B

C

ωP

ωQ

ℓ

Line CST , that is the radical axis between ωP and ωQ, is perpendicular to the line ℓ of centres
of ωP and ωQ. Hence, the chords PP1 and QQ1 are perpendicular to ℓ. So the quadrilateral
PP1Q1Q is an isosceles trapezium with symmetry axis ℓ, and hence is cyclic.

Comment. There are several ways of solving the problem involving Pappus’ theorem. For example,
one may consider the points K “ PB1 X BC and L “ QA1 X AC. Applying Pappus’ theorem to the
lines AA1P and QB1B we get that K, L, and PQ X AB are collinear, i.e. that KL ‖ AB. Therefore,
cyclicity of P , Q, P1, and Q1 is equivalent to that of K, L, P1, and Q1. The latter is easy after noticing
that C also lies on that circle. Indeed, e.g. =pLK,LCq “ =pAB,ACq “ =pP1K,P1Cq shows that K

lies on circle KLC.
This approach also has some possible degeneracy, as the points K and L may happen to be ideal.
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Problem 3. A social network has 2019 users, some pairs of whom are friends. When-
ever user A is friends with user B, user B is also friends with user A. Events of the following
kind may happen repeatedly, one at a time:

Three users A, B, and C such that A is friends with both B and C, but B and C

are not friends, change their friendship statuses such that B and C are now friends,
but A is no longer friends with B, and no longer friends with C. All other friendship
statuses are unchanged.

Initially, 1010 users have 1009 friends each, and 1009 users have 1010 friends each. Prove that
there exists a sequence of such events after which each user is friends with at most one other
user.

(Croatia)

Common remarks. The problem has an obvious rephrasing in terms of graph theory. One
is given a graph G with 2019 vertices, 1010 of which have degree 1009 and 1009 of which have
degree 1010. One is allowed to perform operations on G of the following kind:

Suppose that vertex A is adjacent to two distinct vertices B and C which are not
adjacent to each other. Then one may remove the edges AB and AC from G and
add the edge BC into G.

Call such an operation a refriending. One wants to prove that, via a sequence of such refriend-
ings, one can reach a graph which is a disjoint union of single edges and vertices.

All of the solutions presented below will use this reformulation.

Solution 1. Note that the given graph is connected, since the total degree of any two vertices
is at least 2018 and hence they are either adjacent or have at least one neighbour in common.
Hence the given graph satisfies the following condition:

Every connected component of G with at least three vertices is not complete
and has a vertex of odd degree.

(1)

We will show that if a graph G satisfies condition (1) and has a vertex of degree at least 2, then
there is a refriending on G that preserves condition (1). Since refriendings decrease the total
number of edges of G, by using a sequence of such refriendings, we must reach a graph G with
maximal degree at most 1, so we are done.

A
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Pick a vertex A of degree at least 2 in a connected component G1 of G. Since no component
of G with at least three vertices is complete we may assume that not all of the neighbours
of A are adjacent to one another. (For example, pick a maximal complete subgraph K of G1.
Some vertex A of K has a neighbour outside K, and this neighbour is not adjacent to every
vertex of K by maximality.) Removing A from G splits G1 into smaller connected components
G1, . . . , Gk (possibly with k “ 1), to each of which A is connected by at least one edge. We
divide into several cases.

Case 1: k ě 2 and A is connected to some Gi by at least two edges.

Choose a vertex B of Gi adjacent to A, and a vertex C in another component Gj adjacent
to A. The vertices B and C are not adjacent, and hence removing edges AB and AC and
adding in edge BC does not disconnect G1. It is easy to see that this preserves the condition,
since the refriending does not change the parity of the degrees of vertices.

Case 2: k ě 2 and A is connected to each Gi by exactly one edge.

Consider the induced subgraph on any Gi and the vertex A. The vertex A has degree 1 in
this subgraph; since the number of odd-degree vertices of a graph is always even, we see that
Gi has a vertex of odd degree (in G). Thus if we let B and C be any distinct neighbours of A,
then removing edges AB and AC and adding in edge BC preserves the above condition: the
refriending creates two new components, and if either of these components has at least three
vertices, then it cannot be complete and must contain a vertex of odd degree (since each Gi

does).

Case 3: k “ 1 and A is connected to G1 by at least three edges.

By assumption, A has two neighbours B and C which are not adjacent to one another.
Removing edges AB and AC and adding in edge BC does not disconnect G1. We are then done
as in Case 1.

Case 4: k “ 1 and A is connected to G1 by exactly two edges.

Let B and C be the two neighbours of A, which are not adjacent. Removing edges AB

and AC and adding in edge BC results in two new components: one consisting of a single
vertex; and the other containing a vertex of odd degree. We are done unless this second
component would be a complete graph on at least 3 vertices. But in this case, G1 would be a
complete graph minus the single edge BC, and hence has at least 4 vertices since G1 is not a
4-cycle. If we let D be a third vertex of G1, then removing edges BA and BD and adding in
edge AD does not disconnect G1. We are then done as in Case 1.

A

B C

D

Comment. In fact, condition 1 above precisely characterises those graphs which can be reduced to a
graph of maximal degree ď 1 by a sequence of refriendings.
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Solution 2. As in the previous solution, note that a refriending preserves the property that a
graph has a vertex of odd degree and (trivially) the property that it is not complete; note also
that our initial graph is connected. We describe an algorithm to reduce our initial graph to a
graph of maximal degree at most 1, proceeding in two steps.

Step 1: There exists a sequence of refriendings reducing the graph to a tree.

Proof. Since the number of edges decreases with each refriending, it suffices to prove the fol-
lowing: as long as the graph contains a cycle, there exists a refriending such that the resulting
graph is still connected. We will show that the graph in fact contains a cycle Z and vertices
A,B,C such that A and B are adjacent in the cycle Z, C is not in Z, and is adjacent to A but
not B. Removing edges AB and AC and adding in edge BC keeps the graph connected, so we
are done.

A

B C

To find this cycle Z and vertices A,B,C, we pursue one of two strategies. If the graph
contains a triangle, we consider a largest complete subgraph K, which thus contains at least
three vertices. Since the graph itself is not complete, there is a vertex C not in K connected
to a vertex A of K. By maximality of K, there is a vertex B of K not connected to C, and
hence we are done by choosing a cycle Z in K through the edge AB.

A

B C

If the graph is triangle-free, we consider instead a smallest cycle Z. This cycle cannot
be Hamiltonian (i.e. it cannot pass through every vertex of the graph), since otherwise by
minimality the graph would then have no other edges, and hence would have even degree at
every vertex. We may thus choose a vertex C not in Z adjacent to a vertex A of Z. Since the
graph is triangle-free, it is not adjacent to any neighbour B of A in Z, and we are done. l

Step 2: Any tree may be reduced to a disjoint union of single edges and vertices by a sequence
of refriendings.

Proof. The refriending preserves the property of being acyclic. Hence, after applying a sequence
of refriendings, we arrive at an acyclic graph in which it is impossible to perform any further
refriendings. The maximal degree of any such graph is 1: if it had a vertex A with two
neighbours B,C, then B and C would necessarily be nonadjacent since the graph is cycle-free,
and so a refriending would be possible. Thus we reach a graph with maximal degree at most 1
as desired. l
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Day 2

Problem 4. Find all pairs pk, nq of positive integers such that

k! “ p2n ´ 1qp2n ´ 2qp2n ´ 4q ¨ ¨ ¨ p2n ´ 2
n´1q. p1q

(El Salvador)

Answer: The only such pairs are p1, 1q and p3, 2q.

Common remarks. In all solutions, for any prime p and positive integer N , we will denote
by vppNq the exponent of the largest power of p that divides N . The right-hand side of p1q will
be denoted by Ln; that is, Ln “ p2n ´ 1qp2n ´ 2qp2n ´ 4q ¨ ¨ ¨ p2n ´ 2n´1q.

Solution 1. We will get an upper bound on n from the speed at which v2pLnq grows.

From

Ln “ p2n ´ 1qp2n ´ 2q ¨ ¨ ¨ p2n ´ 2
n´1q “ 2

1`2`¨¨¨`pn´1qp2n ´ 1qp2n´1 ´ 1q ¨ ¨ ¨ p21 ´ 1q

we read

v2pLnq “ 1 ` 2 ` ¨ ¨ ¨ ` pn ´ 1q “
npn ´ 1q

2
.

On the other hand, v2pk!q is expressed by the Legendre formula as

v2pk!q “
8
ÿ

i“1

Z

k

2i

^

.

As usual, by omitting the floor functions,

v2pk!q ă
8
ÿ

i“1

k

2i
“ k.

Thus, k! “ Ln implies the inequality

npn ´ 1q

2
ă k. p2q

In order to obtain an opposite estimate, observe that

Ln “ p2n ´ 1qp2n ´ 2q ¨ ¨ ¨ p2n ´ 2
n´1q ă p2nqn “ 2

n2

.

We claim that

2
n2

ă

ˆ

npn ´ 1q

2

˙

! for n ě 6. p3q

For n “ 6 the estimate p3q is true because 26
2

ă 6.9 ¨ 1010 and
`

npn´1q
2

˘

! “ 15! ą 1.3 ¨ 1012.
For n ě 7 we prove p3q by the following inequalities:

ˆ

npn ´ 1q

2

˙

! “ 15! ¨ 16 ¨ 17 ¨ ¨ ¨
npn ´ 1q

2
ą 2

36 ¨ 16
npn´1q

2
´15

“ 2
2npn´1q´24 “ 2

n2

¨ 2npn´2q´24 ą 2
n2

.
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Putting together p2q and p3q, for n ě 6 we get a contradiction, since

Ln ă 2
n2

ă

ˆ

npn ´ 1q

2

˙

! ă k! “ Ln.

Hence n ě 6 is not possible.

Checking manually the cases n ď 5 we find

L1 “ 1 “ 1!, L2 “ 6 “ 3!, 5! ă L3 “ 168 ă 6!,

7! ă L4 “ 20 160 ă 8! and 10! ă L5 “ 9 999 360 ă 11!.

So, there are two solutions:

pk, nq P
 

p1, 1q, p3, 2q
(

.

Solution 2. Like in the previous solution, the cases n “ 1, 2, 3, 4 are checked manually. We
will exclude n ě 5 by considering the exponents of 3 and 31 in p1q.

For odd primes p and distinct integers a, b, coprime to p, with p | a ´ b, the Lifting The
Exponent lemma asserts that

vppaj ´ bjq “ vppa ´ bq ` vppjq.

Notice that 3 divides 2j ´ 1 if only if j is even; moreover, by the Lifting The Exponent lemma
we have

v3p22j ´ 1q “ v3p4
j ´ 1q “ 1 ` v3pjq “ v3p3jq.

Hence,

v3pLnq “
ÿ

2jďn

v3p4j ´ 1q “
ÿ

jďtn
2

u

v3p3jq.

Notice that the last expression is precisely the exponent of 3 in the prime factorisation of
`

3tn
2
u
˘

!.
Therefore

v3pk!q “ v3pLnq “ v3

ˆ

´

3
X

n
2

\

¯

!

˙

3

Z

n

2

^

ď k ď 3

Z

n

2

^

` 2. (4)

Suppose that n ě 5. Note that every fifth factor in Ln is divisible by 31 “ 25 ´1, and hence
we have v31pLnq ě tn

5
u. Then

n

10
ď
Yn

5

]

ď v31pLnq “ v31pk!q “
8
ÿ

j“1

Z

k

31j

^

ă
8
ÿ

j“1

k

31j
“

k

30
. p5q

By combining p4q and p5q,

3n ă k ď
3n

2
` 2

so n ă 4

3
which is inconsistent with the inequality n ě 5.

Comment 1. There are many combinations of the ideas above; for example combining p2q and p4q
also provides n ă 5. Obviously, considering the exponents of any two primes in p1q, or considering one
prime and the magnitude orders lead to an upper bound on n and k.
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Comment 2. This problem has a connection to group theory. Indeed, the right-hand side is the
order of the group GLnpF2q of invertible n-by-n matrices with entries modulo 2, while the left-hand
side is the order of the symmetric group Sk on k elements. The result thus shows that the only
possible isomorphisms between these groups are GL1pF2q – S1 and GL2pF2q – S3, and there are in
fact isomorphisms in both cases. In general, GLnpF2q is a simple group for n ě 3, as it is isomorphic
to PSLnpF2q.

There is also a near-solution of interest: the right-hand side for n “ 4 is half of the left-hand side
when k “ 8; this turns out to correspond to an isomorphism GL4pF2q – A8 with the alternating group
on eight elements.

However, while this indicates that the problem is a useful one, knowing group theory is of no use
in solving it!
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Problem 5. The Bank of Bath issues coins with an H on one side and a T on the
other. Harry has n of these coins arranged in a line from left to right. He repeatedly performs
the following operation: if there are exactly k ą 0 coins showing H , then he turns over the kth

coin from the left; otherwise, all coins show T and he stops. For example, if n “ 3 the process
starting with the configuration THT would be THT Ñ HHT Ñ HTT Ñ TTT , which stops
after three operations.

(a) Show that, for each initial configuration, Harry stops after a finite number of operations.

(b) For each initial configuration C, let LpCq be the number of operations before Harry stops.
For example, LpTHT q “ 3 and LpTTT q “ 0. Determine the average value of LpCq over all
2n possible initial configurations C.

(USA)

Answer: The average is 1

4
npn ` 1q.

Common remarks. Throughout all these solutions, we let Epnq denote the desired average
value.

Solution 1. We represent the problem using a directed graph Gn whose vertices are the
length-n strings of H ’s and T ’s. The graph features an edge from each string to its successor
(except for TT ¨ ¨ ¨TT , which has no successor). We will also write H̄ “ T and T̄ “ H .

The graph G0 consists of a single vertex: the empty string. The main claim is that Gn can
be described explicitly in terms of Gn´1:

• We take two copies, X and Y , of Gn´1.

• In X, we take each string of n´1 coins and just append a T to it. In symbols, we replace
s1 ¨ ¨ ¨ sn´1 with s1 ¨ ¨ ¨ sn´1T .

• In Y , we take each string of n ´ 1 coins, flip every coin, reverse the order, and append
an H to it. In symbols, we replace s1 ¨ ¨ ¨ sn´1 with s̄n´1s̄n´2 ¨ ¨ ¨ s̄1H .

• Finally, we add one new edge from Y to X, namely HH ¨ ¨ ¨HHH Ñ HH ¨ ¨ ¨HHT .

We depict G4 below, in a way which indicates this recursive construction:

Y

X

HHTH HTHH THTH TTHH

HHHH HTTH TTTH THHH

HTTT THTT HTHT THHT

TTTT HHTT HHHT TTHT

We prove the claim inductively. Firstly, X is correct as a subgraph of Gn, as the operation on
coins is unchanged by an extra T at the end: if s1 ¨ ¨ ¨ sn´1 is sent to t1 ¨ ¨ ¨ tn´1, then s1 ¨ ¨ ¨ sn´1T

is sent to t1 ¨ ¨ ¨ tn´1T .
Next, Y is also correct as a subgraph of Gn, as if s1 ¨ ¨ ¨ sn´1 has k occurrences of H , then

s̄n´1 ¨ ¨ ¨ s̄1H has pn ´ 1 ´ kq ` 1 “ n ´ k occurrences of H , and thus (provided that k ą 0), if
s1 ¨ ¨ ¨ sn´1 is sent to t1 ¨ ¨ ¨ tn´1, then s̄n´1 ¨ ¨ ¨ s̄1H is sent to t̄n´1 ¨ ¨ ¨ t̄1H .
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Finally, the one edge from Y to X is correct, as the operation does send HH ¨ ¨ ¨HHH to
HH ¨ ¨ ¨HHT .

To finish, note that the sequences in X take an average of Epn ´ 1q steps to terminate,
whereas the sequences in Y take an average of Epn ´ 1q steps to reach HH ¨ ¨ ¨H and then an
additional n steps to terminate. Therefore, we have

Epnq “
1

2
pEpn ´ 1q ` pEpn ´ 1q ` nqq “ Epn ´ 1q `

n

2
.

We have Ep0q “ 0 from our description of G0. Thus, by induction, we have Epnq “ 1

2
p1` ¨ ¨ ¨ `

nq “ 1

4
npn ` 1q, which in particular is finite.

Solution 2. We consider what happens with configurations depending on the coins they start
and end with.

• If a configuration starts with H , the last n´1 coins follow the given rules, as if they were
all the coins, until they are all T , then the first coin is turned over.

• If a configuration ends with T , the last coin will never be turned over, and the first
n ´ 1 coins follow the given rules, as if they were all the coins.

• If a configuration starts with T and ends with H , the middle n´ 2 coins follow the given
rules, as if they were all the coins, until they are all T . After that, there are 2n ´ 1 more
steps: first coins 1, 2, . . . , n ´ 1 are turned over in that order, then coins n, n ´ 1, . . . , 1
are turned over in that order.

As this covers all configurations, and the number of steps is clearly finite for 0 or 1 coins, it
follows by induction on n that the number of steps is always finite.

We define EABpnq, where A and B are each one of H , T or ˚, to be the average number of
steps over configurations of length n restricted to those that start with A, if A is not ˚, and
that end with B, if B is not ˚ (so ˚ represents “either H or T ”). The above observations tell us
that, for n ě 2:

• EH˚pnq “ Epn ´ 1q ` 1.

• E˚T pnq “ Epn ´ 1q.

• EHT pnq “ Epn ´ 2q ` 1 (by using both the observations for H˚ and for ˚T ).

• ETHpnq “ Epn ´ 2q ` 2n ´ 1.

Now EH˚pnq “ 1

2
pEHHpnq ` EHT pnqq, so EHHpnq “ 2Epn ´ 1q ´ Epn ´ 2q ` 1. Similarly,

ETT pnq “ 2Epn ´ 1q ´ Epn ´ 2q ´ 1. So

Epnq “
1

4
pEHT pnq ` EHHpnq ` ETT pnq ` ETHpnqq “ Epn ´ 1q `

n

2
.

We have Ep0q “ 0 and Ep1q “ 1

2
, so by induction on n we have Epnq “ 1

4
npn ` 1q.

Solution 3. Let Hi be the number of H ’s in positions 1 to i inclusive (so Hn is the total
number of H ’s), and let Ii be 1 if the ith coin is an H , 0 otherwise. Consider the function

tpiq “ Ii ` 2pminti, Hnu ´ Hiq.

We claim that tpiq is the total number of times coin i is turned over (which implies that the
process terminates). Certainly tpiq “ 0 when all coins are T ’s, and tpiq is always a nonnegative
integer, so it suffices to show that when the kth coin is turned over (where k “ Hn), tpkq goes
down by 1 and all the other tpiq are unchanged. We show this by splitting into cases:
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• If i ă k, Ii and Hi are unchanged, and minti, Hnu “ i both before and after the coin flip,
so tpiq is unchanged.

• If i ą k, minti, Hnu “ Hn both before and after the coin flip, and both Hn and Hi change
by the same amount, so tpiq is unchanged.

• If i “ k and the coin is H , Ii goes down by 1, as do both minti, Hnu “ Hn and Hi; so
tpiq goes down by 1.

• If i “ k and the coin is T , Ii goes up by 1, minti, Hnu “ i is unchanged and Hi goes up
by 1; so tpiq goes down by 1.

We now need to compute the average value of

n
ÿ

i“1

tpiq “
n
ÿ

i“1

Ii ` 2

n
ÿ

i“1

minti, Hnu ´ 2

n
ÿ

i“1

Hi.

The average value of the first term is 1

2
n, and that of the third term is ´1

2
npn`1q. To compute

the second term, we sum over choices for the total number of H ’s, and then over the possible
values of i, getting

2
1´n

n
ÿ

j“0

ˆ

n

j

˙ n
ÿ

i“1

minti, ju “ 2
1´n

n
ÿ

j“0

ˆ

n

j

˙ˆ

nj ´

ˆ

j

2

˙˙

.

Now, in terms of trinomial coefficients,

n
ÿ

j“0

j

ˆ

n

j

˙

“
n
ÿ

j“1

ˆ

n

n ´ j, j ´ 1, 1

˙

“ n

n´1
ÿ

j“0

ˆ

n ´ 1

j

˙

“ 2
n´1n

and
n
ÿ

j“0

ˆ

j

2

˙ˆ

n

j

˙

“
n
ÿ

j“2

ˆ

n

n ´ j, j ´ 2, 2

˙

“

ˆ

n

2

˙ n´2
ÿ

j“0

ˆ

n ´ 2

j

˙

“ 2
n´2

ˆ

n

2

˙

.

So the second term above is

2
1´n

ˆ

2
n´1n2 ´ 2

n´2

ˆ

n

2

˙˙

“ n2 ´
npn ´ 1q

4
,

and the required average is

Epnq “
1

2
n ` n2 ´

npn ´ 1q

4
´

1

2
npn ` 1q “

npn ` 1q

4
.

Solution 4. Harry has built a Turing machine to flip the coins for him. The machine is
initially positioned at the kth coin, where there are k coins showing H (and the position before
the first coin is considered to be the 0

th coin). The machine then moves according to the
following rules, stopping when it reaches the position before the first coin: if the coin at its
current position is H , it flips the coin and moves to the previous coin, while if the coin at its
current position is T , it flips the coin and moves to the next position.

Consider the maximal sequences of consecutive moves in the same direction. Suppose the
machine has a consecutive moves to the next coin, before a move to the previous coin. After
those a moves, the a coins flipped in those moves are all H ’s, as is the coin the machine is
now at, so at least the next a ` 1 moves will all be moves to the previous coin. Similarly,
a consecutive moves to the previous coin are followed by at least a ` 1 consecutive moves to
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the next coin. There cannot be more than n consecutive moves in the same direction, so this
proves that the process terminates (with a move from the first coin to the position before the
first coin).

Thus we have a (possibly empty) sequence a1 ă ¨ ¨ ¨ ă at ď n giving the lengths of maximal
sequences of consecutive moves in the same direction, where the final at moves must be moves
to the previous coin, ending before the first coin. We claim there is a bijection between initial
configurations of the coins and such sequences. This gives

Epnq “
1

2
p1 ` 2 ` ¨ ¨ ¨ ` nq “

npn ` 1q

4

as required, since each i with 1 ď i ď n will appear in half of the sequences, and will contribute i
to the number of moves when it does.

To see the bijection, consider following the sequence of moves backwards, starting with the
machine just before the first coin and all coins showing T . This certainly determines a unique
configuration of coins that could possibly correspond to the given sequence. Furthermore, every
coin flipped as part of the aj consecutive moves is also flipped as part of all subsequent sequences
of ak consecutive moves, for all k ą j, meaning that, as we follow the moves backwards, each
coin is always in the correct state when flipped to result in a move in the required direction.
(Alternatively, since there are 2n possible configurations of coins and 2n possible such ascending
sequences, the fact that the sequence of moves determines at most one configuration of coins,
and thus that there is an injection from configurations of coins to such ascending sequences, is
sufficient for it to be a bijection, without needing to show that coins are in the right state as
we move backwards.)

Solution 5. We explicitly describe what happens with an arbitrary sequence C of n coins.
Suppose that C contain k coins showing H at positions 1 ď c1 ă c2 ă ¨ ¨ ¨ ă ck ď n.

Let i be the minimal index such that ci ě k. Then the first few steps will consist of turning
over the kth, pk ` 1qth, . . . , ci

th, pci ´ 1qth, pci ´ 2qth, . . . , kth coins in this order. After that
we get a configuration with k ´ 1 coins showing H at the same positions as in the initial one,
except for ci. This part of the process takes 2pci ´ kq ` 1 steps.

After that, the process acts similarly; by induction on the number of H ’s we deduce that
the process ends. Moreover, if the ci disappear in order ci1 , . . . , cik , the whole process takes

LpCq “
k
ÿ

j“1

`

2pcij ´ pk ` 1 ´ jqq ` 1
˘

“ 2

k
ÿ

j“1

cj ´ 2

k
ÿ

j“1

pk ` 1 ´ jq ` k “ 2

k
ÿ

j“1

cj ´ k2

steps.
Now let us find the total value Sk of LpCq over all

`

n

k

˘

configurations with exactly k coins
showing H . To sum up the above expression over those, notice that each number 1 ď i ď n

appears as cj exactly
`

n´1

k´1

˘

times. Thus

Sk “ 2

ˆ

n ´ 1

k ´ 1

˙ n
ÿ

i“1

i ´

ˆ

n

k

˙

k2 “ 2
pn ´ 1q ¨ ¨ ¨ pn ´ k ` 1q

pk ´ 1q!
¨
npn ` 1q

2
´

n ¨ ¨ ¨ pn ´ k ` 1q

k!
k2

“
npn ´ 1q ¨ ¨ ¨ pn ´ k ` 1q

pk ´ 1q!

`

pn ` 1q ´ k
˘

“ npn ´ 1q

ˆ

n ´ 2

k ´ 1

˙

` n

ˆ

n ´ 1

k ´ 1

˙

.

Therefore, the total value of LpCq over all configurations is

n
ÿ

k“1

Sk “ npn ´ 1q
n
ÿ

k“1

ˆ

n ´ 2

k ´ 1

˙

` n

n
ÿ

k“1

ˆ

n ´ 1

k ´ 1

˙

“ npn ´ 1q2n´2 ` n2n´1 “ 2
nnpn ` 1q

4
.

Hence the required average is Epnq “ npn`1q
4

.
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Problem 6. Let I be the incentre of acute triangle ABC with AB ‰ AC. The
incircle ω of ABC is tangent to sides BC, CA, and AB at D, E, and F , respectively. The
line through D perpendicular to EF meets ω again at R. Line AR meets ω again at P . The
circumcircles of triangles PCE and PBF meet again at Q.

Prove that lines DI and PQ meet on the line through A perpendicular to AI.
(India)

Common remarks. Throughout the solution, =pa, bq denotes the directed angle between
lines a and b, measured modulo π.

Solution 1.

Step 1. The external bisector of =BAC is the line through A perpendicular to IA. Let DI

meet this line at L and let DI meet ω at K. Let N be the midpoint of EF , which lies on IA

and is the pole of line AL with respect to ω. Since AN ¨ AI “ AE2 “ AR ¨ AP , the points R,
N , I, and P are concyclic. As IR “ IP , the line NI is the external bisector of =PNR, so PN

meets ω again at the point symmetric to R with respect to AN – i.e. at K.
Let DN cross ω again at S. Opposite sides of any quadrilateral inscribed in the circle ω

meet on the polar line of the intersection of the diagonals with respect to ω. Since L lies on
the polar line AL of N with respect to ω, the line PS must pass through L. Thus it suffices to
prove that the points S, Q, and P are collinear.
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Γ

ω

Step 2. Let Γ be the circumcircle of △BIC. Notice that

=pBQ,QCq “ =pBQ,QP q ` =pPQ,QCq “ =pBF, FP q ` =pPE,ECq

“ =pEF,EP q ` =pFP, FEq “ =pFP,EP q “ =pDF,DEq “ =pBI, ICq,

so Q lies on Γ. Let QP meet Γ again at T . It will now suffice to prove that S, P , and T

are collinear. Notice that =pBI, IT q “ =pBQ,QT q “ =pBF, FP q “ =pFK,KP q. Note
FD K FK and FD K BI so FK ‖ BI and hence IT is parallel to the line KNP . Since
DI “ IK, the line IT crosses DN at its midpoint M .

Step 3. Let F 1 and E 1 be the midpoints of DE and DF , respectively. Since DE 1 ¨E 1F “ DE 12 “
BE 1 ¨E 1I, the point E 1 lies on the radical axis of ω and Γ; the same holds for F 1. Therefore, this
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radical axis is E 1F 1, and it passes through M . Thus IM ¨ MT “ DM ¨ MS, so S, I, D, and T

are concyclic. This shows =pDS, ST q “ =pDI, IT q “ =pDK,KP q “ =pDS, SP q, whence the
points S, P , and T are collinear, as desired.
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Comment. Here is a longer alternative proof in step 1 that P , S, and L are collinear, using a circular
inversion instead of the fact that opposite sides of a quadrilateral inscribed in a circle ω meet on the
polar line with respect to ω of the intersection of the diagonals. Let G be the foot of the altitude from
N to the line DIKL. Observe that N,G,K, S are concyclic (opposite right angles) so

=DIP “ 2=DKP “ =GKN ` =DSP “ =GSN ` =NSP “ =GSP ,

hence I,G, S, P are concyclic. We have IG ¨ IL “ IN ¨ IA “ r2 since △IGN „ △IAL. Inverting the
circle IGSP in circle ω, points P and S are fixed and G is taken to L so we find that P, S, and L are
collinear.
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Solution 2. We start as in Solution 1. Namely, we introduce the same points K, L, N , and S,
and show that the triples pP,N,Kq and pP, S, Lq are collinear. We conclude that K and R are
symmetric in AI, and reduce the problem statement to showing that P , Q, and S are collinear.

Step 1. Let AR meet the circumcircle Ω of ABC again at X. The lines AR and AK are
isogonal in the angle BAC; it is well known that in this case X is the tangency point of Ω with
the A-mixtilinear circle. It is also well known that for this point X, the line XI crosses Ω again
at the midpoint M 1 of arc BAC.

Step 2. Denote the circles BFP and CEP by ΩB and ΩC , respectively. Let ΩB cross AR

and EF again at U and Y , respectively. We have

=pUB,BF q “ =pUP, PF q “ =pRP, PF q “ =pRF, FAq,

so UB ‖ RF .
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Next, we show that the points B, I, U , and X are concyclic. Since

=pUB,UXq “ =pRF,RXq “ =pAF,ARq ` =pFR, FAq “ =pM 1B,M 1Xq ` =pDR,DF q,

it suffices to prove =pIB, IXq “ =pM 1B,M 1Xq ` =pDR,DF q, or =pIB,M 1Bq “ =pDR,DF q.
But both angles equal =pCI, CBq, as desired. (This is where we used the fact that M 1 is the
midpoint of arc BAC of Ω.)

It follows now from circles BUIX and BPUFY that

=pIU, UBq “ =pIX,BXq “ =pM 1X,BXq “
π ´ =A

2

“ =pEF,AF q “ =pY F,BF q “ =pY U,BUq ,

so the points Y , U , and I are collinear.
Let EF meet BC at W . We have

=pIY, Y W q “ =pUY, FY q “ =pUB, FBq “ =pRF,AF q “ =pCI, CW q,

so the points W , Y , I, and C are concyclic.
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Similarly, if V and Z are the second meeting points of ΩC with AR and EF , we get that
the 4-tuples pC, V, I,Xq and pB, I, Z,W q are both concyclic.

Step 3. Let Q1 “ CY X BZ. We will show that Q1 “ Q.
First of all, we have

=pQ1Y,Q1Bq “ =pCY, ZBq “ =pCY, ZY q ` =pZY,BZq

“ =pCI, IW q ` =pIW, IBq “ =pCI, IBq “
π ´ =A

2
“ =pFY, FBq,

so Q1 P ΩB. Similarly, Q1 P ΩC . Thus Q1 P ΩB X ΩC “ tP,Qu and it remains to prove that
Q1 ‰ P . If we had Q1 “ P , we would have =pPY, PZq “ =pQ1Y,Q1Zq “ =pIC, IBq. This
would imply

=pPY, Y F q ` =pEZ,ZP q “ =pPY, PZq “ =pIC, IBq “ =pPE, PF q,

so circles ΩB and ΩC would be tangent at P . That is excluded in the problem conditions, so
Q1 “ Q.
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Step 4. Now we are ready to show that P , Q, and S are collinear.
Notice that A and D are the poles of EW and DW with respect to ω, so W is the pole

of AD. Hence, WI K AD. Since CI K DE, this yields =pIC,WIq “ =pDE,DAq. On the
other hand, DA is a symmedian in △DEF , so =pDE,DAq “ =pDN,DF q “ =pDS,DF q.
Therefore,

=pPS, PF q “ =pDS,DF q “ =pDE,DAq “ =pIC, IW q

“ =pY C, YW q “ =pY Q, Y F q “ =pPQ, PF q,

which yields the desired collinearity.
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