
61th International Mathematical Olympiad

Day 1. O�cial Solutions

Problem 1. Consider the convex quadrilateral ABCD. The point P is in the interior of
ABCD. The following ratio equalities hold:

=PAD : =PBA : =DPA � 1 : 2 : 3 � =CBP : =BAP : =BPC.

Prove that the following three lines meet in a point: the internal bisectors of angles =ADP
and =PCB and the perpendicular bisector of segment AB.

Solution 1. Let ϕ � =PAD and ψ � =CBP ; then we have =PBA � 2ϕ, =DPA � 3ϕ,
=BAP � 2ψ and =BPC � 3ψ. Let X be the point on segment AD with =XPA � ϕ. Then

=PXD � =PAX �=XPA � 2ϕ � =DPA�=XPA � =DPX.

It follows that triangle DPX is isosceles with DX � DP and therefore the internal angle
bisector of =ADP coincides with the perpendicular bisector of XP. Similarly, if Y is a point
on BC such that =BPY � ψ, then the internal angle bisector of =PCB coincides with the
perpendicular bisector of PY . Hence, we have to prove that the perpendicular bisectors of XP ,
PY , and AB are concurrent.

Notice that

=AXP � 180� �=PXD � 180� � 2ϕ � 180� �=PBA.

Hence the quadrilateral AXPB is cyclic; in other words, X lies on the circumcircle of trian-
gle APB. Similarly, Y lies on the circumcircle of triangle APB. It follows that the perpen-
dicular bisectors of XP , PY , and AB all pass through the center of circle pABY PXq. This
�nishes the proof.

Comment. Introduction of points X and Y seems to be the key step in the solution above. Note that

the same point X could be introduced in di�erent ways, e.g., as the point on the ray CP beyond P
such that =PBX � ϕ, or as a point where the circle pAPBq meets again AB. Di�erent de�nitions of

X could lead to di�erent versions of the further solution.
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Solution 2. We de�ne the angles ϕ � =PAD, ψ � =CBP and use =PBA � 2ϕ, =DPA �
3ϕ, =BAP � 2ψ and =BPC � 3ψ again. Let O be the circumcenter of 4APB.

Notice that =ADP � 180� � =PAD � =DPA � 180� � 4ϕ, which, in particular, means
that 4ϕ   180�. Further, =POA � 2=PBA � 4ϕ � 180��=ADP , therefore the quadrilateral
ADPO is cyclic. By AO � OP , it follows that =ADO � =ODP . Thus DO is the internal
bisector of =ADP . Similarly, CO is the internal bisector of =PCB.

Finally, O lies on the perpendicular bisector of AB as it is the circumcenter of 4APB.
Therefore the three given lines in the problem statement concur at point O.
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Problem 2. The real numbers a, b, c, d are such that a ¥ b ¥ c ¥ d ¡ 0 and a� b� c�d � 1.
Prove that

pa� 2b� 3c� 4dq aa bb cc dd   1.

Solution 1. The weighted AM�GM inequality with weights a, b, c, d gives

aabbccdd ¤ a � a� b � b� c � c� d � d � a2 � b2 � c2 � d2,

so it su�ces to prove that pa� 2b� 3c� 4dqpa2� b2� c2� d2q   1 � pa� b� c� dq3. This can
be done in various ways, for example:

pa� b� c� dq3 ¡ a2pa� 3b� 3c� 3dq � b2p3a� b� 3c� 3dq

� c2p3a� 3b� c� 3dq � d2p3a� 3b� 3c� dq

¥ pa2 � b2 � c2 � d2q � pa� 2b� 3c� 4dq.

Solution 2. From b ¥ d we get

a� 2b� 3c� 4d ¤ a� 3b� 3c� 3d � 3 � 2a.

If a   1
2
, then the statement can be proved by

pa� 2b� 3c� 4dq aabbccdd ¤ p3 � 2aqaaabacad � p3 � 2aqa � 1 � p1 � aqp1 � 2aq   1.

From now on we assume 1
2
¤ a   1.

By b, c, d   1 � a we have

bbccdd   p1 � aqb � p1 � aqc � p1 � aqd � p1 � aq1�a.

Therefore,
pa� 2b� 3c� 4dqaabbccdd   p3 � 2aq aa p1 � aq1�a.

For 0   x   1, consider the functions

fpxq � p3� 2xqxxp1� xq1�x and gpxq � log fpxq � logp3� 2xq� x log x�p1� xq logp1� xq;

hereafter, log denotes the natural logarithm. It is easy to verify that

g2pxq � �
4

p3 � 2xq2
�

1

x
�

1

1 � x
�

1 � 8p1 � xq2

xp1 � xqp3 � 2xq2
¡ 0,

so g is strictly convex on p0, 1q.
By g

�
1
2

�
� log 2� 2 � 1

2
log 1

2
� 0 and lim

xÑ1�
gpxq � 0, we have gpxq ¤ 0 (and hence fpxq ¤ 1)

for all x P
�
1
2
, 1

�
, and therefore

pa� 2b� 3c� 4dqaabbccdd   fpaq ¤ 1.

Comment. For a large number of variables a1 ¥ a2 ¥ . . . ¥ an ¡ 0 with
°

i ai � 1, the inequality�¸
i

iai

�¹
i

aaii ¤ 1

does not necessarily hold. Indeed, let a2 � a3 � . . . � an � ε and a1 � 1 � pn � 1qε, where n and

ε P p0, 1{nq will be chosen later. Then�¸
i

iai

�¹
i

aaii �

�
1�

npn� 1q

2
ε



εpn�1qεp1� pn� 1qεq1�pn�1qε. p1q

If ε � C{n2 with an arbitrary �xed C ¡ 0 and n Ñ 8, then the factors εpn�1qε � expppn� 1qε log εq
and p1� pn� 1qεq1�pn�1qε tend to 1, so the limit of p1q in this set-up equals 1 � C{2. This is not

simply greater than 1, but it can be arbitrarily large.
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Problem 3. There are 4n pebbles of weights 1, 2, 3, . . . , 4n. Each pebble is coloured in one
of n colours and there are four pebbles of each colour. Show that we can arrange the pebbles
into two piles so that the following two conditions are both satis�ed:

• The total weights of both piles are the same.

• Each pile contains two pebbles of each colour.

Solution 1. Let us pair the pebbles with weights summing up to 4n� 1, resulting in the set
S of 2n pairs: t1, 4nu, t2, 4n � 1u, . . . , t2n, 2n � 1u. It su�ces to partition S into two sets,
each consisting of n pairs, such that each set contains two pebbles of each color.

Introduce a multi-graphG (i.e., a graph with loops and multiple edges allowed) on n vertices,
so that each vertex corresponds to a color. For each pair of pebbles from S, we add an edge
between the vertices corresponding to the colors of those pebbles. Note that each vertex has
degree 4. Also, a desired partition of the pebbles corresponds to a coloring of the edges of G in
two colors, say red and blue, so that each vertex has degree 2 with respect to each color (i.e.,
each vertex has equal red and blue degrees).

To complete the solution, it su�ces to provide such a coloring for each component G1 of G.
Since all degrees of the vertices are even, in G1 there exists an Euler circuit C (i.e., a circuit
passing through each edge of G1 exactly once). Note that the number of edges in C is even (it
equals twice the number of vertices in G1). Hence all the edges can be colored red and blue so
that any two edges adjacent in C have di�erent colors (one may move along C and color the
edges one by one alternating red and blue colors). Thus in G1 each vertex has equal red and
blue degrees, as desired.

Comment 1. To complete Solution 1, any partition of the edges of G into circuits of even lengths

could be used. In the solution above it was done by the reference to the well-known Euler Circuit

Lemma: Let G be a connected graph with all its vertices of even degrees. Then there exists a circuit

passing through each edge of G exactly once.

Solution 2. As in Solution 1, we will show that it is possible to partition 2n pairs t1, 4nu,
t2, 4n�1u, . . . , t2n, 2n�1u into two sets, each consisting of n pairs, such that each set contains
two pebbles of each color.

Introduce a multi-graph (i.e., a graph with multiple edges allowed) Γ whose vertices corre-
spond to pebbles; thus we have 4n vertices of n colors so that there are four vertices of each
color. Connect pairs of vertices t1, 4nu, t2, 4n� 1u, . . . , t2n, 2n� 1u by 2n black edges.

Further, for each monochromatic quadruple of vertices i, j, k, ` we add a pair of grey edges
forming a matching, e.g., pi, jq and pk, `q. In each of n colors of pebbles we can choose one of
three possible matchings; this results in 3n ways of constructing grey edges. Let us call each of
3n possible graphs Γ a cyclic graph. Note that in a cyclic graph Γ each vertex has both black
and grey degrees equal to 1. Hence Γ is a union of disjoint cycles, and in each cycle black and
grey edges alternate (in particular, all cycles have even lengths).

It su�ces to �nd a cyclic graph with all its cycle lengths divisible by 4. Indeed, in this case,
for each cycle we start from some vertex, move along the cycle and recolor the black edges
either to red or to blue, alternating red and blue colors. Now blue and red edges de�ne the
required partition, since for each monochromatic quadruple of vertices the grey edges provide
a bijection between the endpoints of red and blue edges.

Among all possible cyclic graphs, let us choose graph Γ0 having the minimal number of
components (i.e., cycles). The following claim completes the solution.

Claim. In Γ0, all cycle lengths are divisible by 4.
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Proof. Assuming the contrary, choose a cycle C1 with an odd number of grey edges. For some
color c the cycle C1 contains exactly one grey edge joining two vertices i, j of color c, while the
other edge joining two vertices k, ` of color c lies in another cycle C2. Now delete edges pi, jq
and pk, `q and add edges pi, kq and pj, `q. By this switch we again obtain a cyclic graph Γ1

0 and
decrease the number of cycles by 1. This contradicts the choice of Γ0. l

Comment 2. Use of an auxiliary graph and reduction to a new problem in terms of this graph is one

of the crucial steps in both solutions presented. In fact, graph G from Solution 1 could be obtained

from any graph Γ from Solution 2 by merging the vertices of the same color.
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